International Journal of Applied and Natural Sciences (IJANS) ISSN(P): 2319-4014; ISSN(E): 2319-4022 Vol. 6, Issue 2, Feb - Mar 2017; 13-22 © IASET

STUDY OF OXYGEN ISOTOPE EFFECT IN Pr, Ca, AND Zn DOPED SUPERCONDUCTIVITY YBa₂Cu₃O_{7-δ},

K. P SINGH¹, SUMIT KUMARGUPTA² & RASHMI MEEL³

¹Associate Professor, Jaipur National University, Jaipur, Rajasthan, India ²Associate Professor, Global Institute of Technology, Jaipur, Rajasthan, India ³Research Scholar, Sunrise University, Alwar, Rajasthan, India

ABSTRACT

The oxygen isotope effect in Pr, Ca, and Zn doped superconductivity $YBa_2Cu_3O_{7-\delta}$ was investigated. Pr and Ca substitute predominantly at the Y site while Zn goes into the Cu plane site. The shift in critical temperature (ΔT_C) between samples oxygenated in ^{18}O and ^{16}O was obtained via dc resistance measurements, and low field dc magnetization and ac susceptibility measurements in a SQUID magnetometer. Confirmation of the substitution of the oxygen was a achieved with Raman and SIMS measurements. The Pr, Ca and Zn substituted change T_C of the superconductor in different ways. Increasing Pr concentrations lower T_C and increase ΔT_C with the isotope coefficient, α , approaching $\frac{1}{2}$. The additions of ca reduces the size of both ΔT_c and α . Both exhibit a small parabolic effect with increasing Ca substitution. An increase in Zn substitution. An increase in Zn substituted lowers T_C but ΔT_C remains nearly constant, or perhaps gets slightly smaller, with α increasing to approximately $\frac{1}{2}$.

KEYWORDS: Oxygen Isotope Effect in Pr, Ca, and Zn Doped Superconductivity YBa₂Cu₃O_{7-δ}